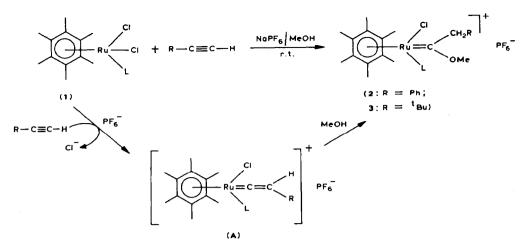
Preliminary communication

FORMATION OF ARENE(CARBENE)RUTHENIUM COMPLEXES VIA VINYLIDENERUTHENIUM INTERMEDIATES

KHALID OUZZINE, HUBERT LE BOZEC and PIERRE H. DIXNEUF *

Laboratoire de Chimie de Coordination Organique (UA CNRS 415), Campus de Beaulieu, Université de Rennes, 35042 Rennes Cedex (France)

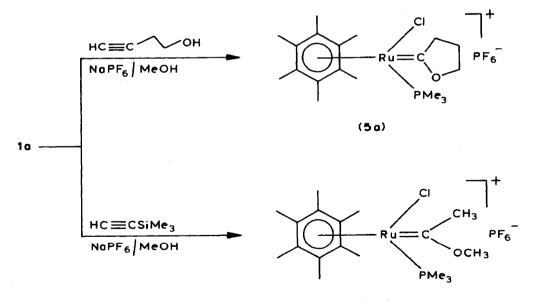

(Received September 10th, 1986)

Summary

RuCl₂(PR₃)(η^{6} -C₆Me₆)(PR₃ = PMe₃; PMe₂Ph) reacts at room temperature with alkyne RC=CH and NaPF₆ in methanol to produce the (alkoxy)al-kylcarbeneruthenium complexes [Ru(=C(OMe)CH₂R)Cl(PR₃)(η^{6} -C₆Me₆)]⁺PF₆⁻ (R = Ph, 'Bu, H) via a vinylideneruthenium intermediate. Use of 4-hydroxybutyne-1 leads to intramolecular cyclisation and formation of [Ru(=CCH₂CH₂CH₂CH₂O)Cl-(PMe₃)(C₆Me₆)]PF₆.

Areneruthenium(II) complexes such as RuCl₂(PR₃)(η^6 -C₆Me₆) (1) have recently been shown [1] to be efficient catalyst precursors for the addition of carbamates to terminal alkynes to give vinyl carbamates. The regioselectivity of the addition suggested that the activation of the alkyne might proceed via a vinylideneruthenium intermediate. Although the M(η^2 -alkyne) \rightarrow M(η^1 -vinylidene) rearrangement is well documented [2], especially in the cyclopentadienylruthenium(II) series [3], it has not been observed with areneruthenium(II) derivatives. Our attempts to isolate vinylideneruthenium complexes from 1 were initially unsuccessful, but we have found now that these intermediates can be trapped with alcohol to produce new (alkoxy)alkylideneruthenium complexes containing arene ligands.

To a suspension of 1 mmol (0.41 g) of 1a [4] in 30 ml of methanol were added 1 mmol of phenylacetylene and 1 mmol NaPF₆. On stirring at room temperature a yellow precipitate formed rapidly, and this was recrystallized from dichloromethane/ether to give a 60% (0.395 g) yield of 2a (Scheme 1). Only one isomer was observed by NMR spectroscopy. The ¹H NMR spectrum showed an AB system for the methylene protons, a signal consistent with a chiral ruthenium centre. In ¹³C {¹H} NMR, the carbene-carbon resonance appeared at low field, as expected for a cationic carbene complex, and at 223 K only the resonance due to the $CH_2-C(Ph)$ carbon nuclei disappeared, indicating a coalescence related to the rotation around the (Ru)CCH₂C(Ph) bonds. (¹H NMR (300.13 MHz, CD₂Cl₂, 300 K) δ (ppm): 7.35 (m, Ph), 5.04 and 4.50 (AB system, CH₂Ph, ²J(HH) 13 Hz), 4.59 (s, OMe), 2.01 (s,



 $(a: PL_3 = PMe_3; b: PL_3 = PMe_2Ph)$

SCHEME 1

 C_6Me_6), 1.44 (d, PMe₃, ²J(PH) 10.6 Hz); ³¹P NMR (32.38 MHz, CD₃COCD₃, 309 K) δ (ppm): 6.48 (s, PMe₃), 145.1 (sept, PF₆⁻); ¹³C {¹H} NMR (75.47 MHz, CD₂Cl₂, 300 K) δ (ppm): 323.0 (d, Ru=C, ²J(PC) 20.6 Hz), 108.1 (s, C₆Me₆), 68.0 (s, OMe), 56.7 (s, CH₂), 16.6 (s, C₆Me₆), 16.2 (d, PMe₃, ^IJ(PC) 35 Hz)).

Under similar conditions reaction of complex 1b [4] with phenylacetylene gave 2b in 58% yield. The carbeneruthenium complex 3a (56%) was obtained by reaction of

(4a)

SCHEME 2

Complex	¹ H NMR (300.13 MHz) δ(=C-CH ₂)(ppm)(² J(AB))	³¹ P NMR (32.38 MHz) δ (PR ₃)(s) ^b (ppm)	${^{1}H}^{13}C$ NMR (75.47 MHz) $\delta(Ru=C)(ppm)(^{2}J(PC))$
2a	5.04; 4.50 (13 Hz)	6.5	323.0 (20.6 Hz)
2b	5.49; 4.09 (12 Hz)	12.6	319.3 (19.8 Hz)
3a	3.70; 3.10 (20.6 Hz)	0.7	330.5 (16.1 Hz)
4a	2.98 (=C-CH ₃)	10.5	330.9 (21.2 Hz)
5 a	3.70; 3.30 (8 Hz)	8.6	317.4 (22.1 Hz)
	5.18; 5.16 (23 Hz) °		

TABLE 1 NMR DATA FOR CARBENE-RUTHENIUM COMPLEXES 2-5

^a In CD₂Cl₂ at 300 K. ^b In addition, a septuplet was observed at ca δ -144 ppm, with respect to H₁PO₄ as external reference, for the PF₆⁻ anion. ^c O-CH₂.

1a with 2,2-dimethylbutyne-1. Complex 4a was obtained in 60% yield by treating 1a with trimethylsilylacetylene at room temperature (Scheme 2); its formation may involve a protonolysis of the C-Si bond by methanol as it was observed in carbene-platinum [5] and -tungsten complexes [6]. Reaction of complex 1a with 4-hydroxybutyne-1 in methanol gave exclusively complex 5a, isolated in 61% yield, indicating that the intramolecular addition of the alcohol function is favoured over addition of the solvent methanol. The complexes 2-5 gave satisfactory analyses, showed in the infrared absorptions at ca. 1280 cm⁻¹ (C-OMe) and at 840 cm⁻¹ (PF₆⁻) and were characterized by NMR (Table 1).

The addition of an alcohol to an electrophilic vinylidene ligand is now wellestablished [2,7]. Thus the formation of the carbeneruthenium(II) complexes 2-5probably proceeds via the addition of alcohol to the vinylidene ligand in the arene ruthenium(II) intermediates of type A (Scheme 1). The intermediates A may also be the active species in the additions to terminal alkynes catalyzed by precursors of type 1.

References

- 1 R. Mahé, P.H. Dixneuf and S. Lécolier, Tetrahedron Lett., in press.
- 2 M.I. Bruce and A.G. Swincer in F.G.A. Stone and R. West (Eds.), Advances in Organometallic Chemistry, Academic Press, New York, Vol. 22, 1983, p. 59.
- 3 M.I. Bruce and A.G. Swincer, Aust. J. Chem., 33 (1980) 1471.
- 4 M.A. Bennett and A.K. Smith, J. Chem. Soc. Dalton. Trans., (1974) 233.
- 5 Y.T. Struchkov, G.G. Aleksandrov, V.B. Pukhnarevich, S.P. Sushchinskaya and M.G. Voronkov, J. Organomet. Chem., 172 (1979) 269.
- 6 A. Parlier and H. Rudler, J. Chem. Soc. Chem. Commun., (1986) 514.
- 7 H.C. Clark and M.H. Chisholm, Acc. Chem. Res., 6 (1973) 203.